

Buckingham- PI theorem

Dimensional analysis

Fracture of materials

Statement

"If there is a physically meaningful equation involving a certain number **n physical variables**, then the original equation can be rewritten in terms of a set of **$p = n - k$ dimensionless parameters $\pi_1, \pi_2, \dots, \pi_p$** constructed from the original variables, **where k is the number of physical dimensions involved.**"

Why is it useful ?

- Find laws and equations based on physical variables
- Get a better intuition of the important parameters of a system
- Form precise laws from experiments (or theories)
- NB: here π is not 3.1415 ... BUT a dimensionless parameter !

$$y = g(x)$$
$$f'(x) = \lim_{h \rightarrow 0} \frac{f(x+h) - f(x)}{h}$$
$$h = \frac{\pi}{2}$$
$$f'(x) = \lim_{h \rightarrow 0} \frac{(x+h)^2 - x^2}{h}$$
$$= \lim_{h \rightarrow 0} \frac{x^2 + 2xh + h^2 - x^2}{h}$$
$$= \lim_{h \rightarrow 0} \frac{2xh + h^2}{h}$$
$$= \lim_{h \rightarrow 0} h(2x + h)$$
$$= 0$$
$$f'(x) = \lim_{h \rightarrow 0} \frac{h(2x + h)}{h}$$
$$f'(x) = 2x$$
$$f'(0) = \lim_{h \rightarrow 0} \frac{h(2x + h)}{h}$$
$$f'(0) = 0$$

Steps of the theorem

1. Determine the N important system parameters (physical variables) for what we want to find
2. Build the matrix of the physical variables/dimensions and find its rank K
3. Determine the number of dimensionless groups $p = N - K$
 - N is the number of physical variables (speed, density, pressure...)
 - K is the number of physical dimensions (kg, m, s...) -> Always take base units for convenience !
4. Build the p dimensionless groups
5. Find the equation for the physical parameter you are interested in !
 - If there is only one group, only one experiment will be necessary to find a numerical value of the dimensionless parameter π
 - If there is multiple group, multiple experiments will be necessary to find the link between them.

- We aim to find a relationship for the time t it takes for an object initially at rest to fall a certain distance h , under the influence of gravity g . (We neglect friction)
- Step 1 :
 - What are the physical variables ?
 - What are their physical dimensions ?
- $t = [s]$
- $h = [m]$
- $g = [a] = [m/s^2]$
- $N = 3$

Example

- Step 2 : build the matrix with :
 - Physical variables in columns
 - Physical dimensions in row

	t	g	h
s	1	-2	0
m	0	1	1

- This is a matrix of rank $K = 2$!
- Step 3 : Determine the number of dimensionless parameters p
 - $P = N - K = 3 - 2 = 1$

Example

- Step 4 : Choose and build the p dimensionless parameters
 - We need only 1 : since we want to find t at the end, let's take it as a basis ! (we could also search h for a given t ...)
 - We need to balance t with the other $N-P$ physical variables to make π dimensionless

$$\Pi = t g^{-a} h^{-b} \quad (\Pi \text{ is dimensionless})$$

- For easier resolution, let's replace the physical variables with their dimensions

$$1 = T^1 (L/T^2)^{-a} L^{-b} \quad \text{with } T = \text{time and } L = \text{distance}$$

- We can solve this independently for each dimension !
 - second, T : $0 = 1 + 2a$
 - meter, L : $0 = -a - b$
 - $a = -1/2$
 - $b = 1/2$

$$\pi = t * \sqrt{\frac{g}{h}}$$

Example

- Step 5 : let's find the relation for t !
 - If you know t , g and h , how many experiments will you need to do to determine the numerical value of π ?
 - After one experiment, we find $\pi^2 = 2$!
 - By isolating t , we find :

$$t = \pi \sqrt{\frac{h}{g}} = \sqrt{\frac{2h}{g}}$$

$$\pi = t * \sqrt{\frac{g}{h}}$$

- Which is the same relation we would find by resolving kinetics with acceleration = g and initial speed = 0 !

- What if there is more than one dimensionless parameter ? ($p > 1$)
- You need to make more experiments, varying the value of the physical variables to find this relation :

$$\pi_1 = f(\pi_2, \pi_3, \dots)$$

- In our case, if there was more than one dimensionless parameter (for example, adding air drag/resistance), we would need to solve by experiments :

$$t \sqrt{\frac{g}{h}} = f(\pi_2, \pi_3, \dots)$$

- Be careful the relation f could be non-trivial ! (For example, **the Reynold's number is a dimensionless parameter**, influencing other equations through this f in complex ways !)

- Exercices 1, 2 and 4 will be about Buckingham-Pi
- Exercice 3 will be about wave propagation